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Study of Stochastic Parametric Resonance with Application to Ions 

Trapped in a Particle Beam 

Shao Yuan Hsueh 

Fermi National Accelemto~ Laboratory, Batavia, Illinois 60510 

The stochastic parametric resonance equation it(u:+qt(t))z = 0 with periodic 

Schottky noise [(t) is studied. When the parametric resonance condition is satisfied, 

the average amplitude of oscillation grows exponentially with time squared. When it 

is not, the average amplitude can still grow exponentially. The average energy of the 

oscillators is proportional to the fourth power of the average oscillation amplitude. 

The result is applied to ions trapped in a particle beam. 
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Typeset Using REVZ’EX 

1 



I. INTRODUCTION 

It is well knownjl] that particle beams circulating in a ring can trap oppositely 

charged particles. In the case of electron and p beams, positive ions produced by the 

collisions of the beam particles with the residual molecules inside the beam pipe could 

be trapped. The trapped ions oscillate transversely in the potential well produced by 

the space-charge field of the beam. If the cross section of the beam is a circle of area 

A with uniform density, the electric field inside the beam is radial with the magnitude 

where 23rR is the machine circumference and T is the radial position relative to the 

center of the beam. The azimuthal charge density p has units of Coulomb/rad. In the 

first approximation, p is independent of time for a coasting beam stored in a storage 

ring. The ions produced inside the beam are trapped by the harmonic potential with 

the angular oscillation frequency 

4 
4 = 2E”ARMP0 1 (2) 

where q and M are the charge and mass of the ions respectively. The time-averaged 

azimuthal charge density pu equals eN/2s, where e is the charge of the beam particles 

and N is the total number of particles of the beam respectively. 

Most of the ions produced are trapped in the potential well. The depth of the 

potential well for a typical beam is approximately 100 eV, much larger than the 

approximately 1 eV average ion energy at production. Recent observations[2] at the 

FNAL p Accumulator indicate that ions escape the well at a much faster rate than 

expected. It is interesting to analyze the interaction of the ions with the beam to see 

how the ions gain enough energy from the beam to escape the well. In particular, we 

will analyze the diffusion of the ions due to their interaction with the beam Schottky 

noise. 
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An analogy to the Brownian motion may be useful here. Brownian particles 

diffuse in the fluid they are immersed in. The fluid is not continuous but consists 

of many molecules. The collision of the molecules and the Brownian particle can 

be decomposed into two parts (Langevin equation): a time-averaged part which is 

identified with the friction and a fast fluctuating part which is due to the collision 

of the Brownian particle with individual molecules. This fast fluctuating part is the 

noise that causes the Brownian particles to diffuse. 

It turns out that the trapped ions can diffuse out of the harmonic potential well 

through their interaction with the beam Schottky noise. But the diffusion is not like 

the Brownian motion. Since the frequency spread of the p beam of FNAL Accumu- 

lator is very narrow (a,/f z 5 x lo-‘), we will restrict ourself to the monochromatic 

beam limit. 

II. BEAM SCHOTTKY NOISE 

At any point of the storage ring, the azimuthal charge density p can be written 

431 

p(t) = ~ ~ e6(wjt + S:’ - 2m~) , 
m=-m jzz1 2a 

(3) 

where wj and 8; are the angular revolution frequency and initial angular position 

of the j “’ beam particle respectively. Equation 3 can be decomposed into a time- 

averaged part prl and a fast fluctuating part 4(t). The Schottky noise d(1) is due 

to the fact that beam is not a continuous fluid. Since the beam particles circulate 

around the storage ring, d(t) is a periodic function of the beam revolution period. 

The Fourier decomposition of 4(t) is 

I = ~ ~ ~ cos(m(wjt + e:l)) 
m-1 J--1 
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For a coasting beam, 99 is assumed to be uniformly distributed around the ring. 

If the beam is monochromatic, the above equation can be re-written as 

4(t) = g {a, cos(mwot) + b, sin(mw&)} , (5) 
m=l 

where wu is the revolution frequency of the beam particles, and 

a, = ; g cos(mej0) 

b,=-fgsin(m6’:). (6) 

Since a, and b, are the suns of N terms and N is large, we can use the Central 

Limit Theorem of probability to assert that a, and b,” have Gaussian distributions 

with zero mean and (a,,,al) and (b,br) equal (i)‘$6,1. 

The auto-correlation function of 4(t) is 

(4(hM(W = mg(fY; cos(mw(tl - h)) (7) 

III. EQUATION OF MOTION 

The motion of the ions is described by the stochastic differential equation[4] 

dzl 
dt=WixZ 
dzz 
- = -(W + t(t))+1 T 
dt (8) 

where 2, and +2 are the position I and the normalized velocity U/W; of the ion 

respectively, and t(t) is the fluctuation due to the beam noise given by 

e(t) = 24(t) 

It is convenient to write the equations in matrix notation 

(9) 



where 

c= (11) ,A,= (“is) ,and&= (:I:] 

In the interaction picture, the above equation transforms to 

g = ((t)B(t)?ii 

where 

$ = e-a”t; and B(t) = e--Aot&eAot 

It can be shown that eAot is the rotation matrix 

dot = (;I;;;+,;) ;;;l;::) , 

and it follows 

B(t) = 

t 

sin(2w;t)/2 sin’(w;t) 

- cos’(w;t) - sin(2w;t)/2 

The formal solution of G(t) is 

l+gl*dt,...l”-’ dt;t(t,). .((t;)B(tl). B(k) w’(O) 

=T exp ( (~,tWtdWd)) w’(O) > 

where T(. .) is the time ordered product operator defined by Eq. 16. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

We have shown that E(t) is Gaussian with zero mean in section II. We will 

take advantage of the fact that in this case the first cumulant and the cumulants 

above second order of t(t) are zero. The second order cumulant is the same as the 

auto-correlation function (((tl)((tz)). Taking th e average of Eq. 16 and expanding 

(((tl)((tz). ((t;)) in cumulants, we find that all odd i”” terms are zero. We find 

Eq. 17 reduces to 
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(c(t)) = T (=q (i,t db Jut dtZ(~(tl)E(t2))B(tl)B(t2))) c(O) (18) 

Explicitly, when we expand the time ordered exponential of Eq. 18, each term is 

~‘dtl...~ti-‘dti(C Mb, )t(h 1) Mb-, )W;,,) B(h) B(h) , (19) 

where the sum is over all possible partitions of {1,2.. . i}, with i even, into subsets 

of 2 numbers. There are a total i!/(2i/‘(i/2)!) combinations. 

IV. THE MONOCHROMATIC BEAM CASE 

From Eq. 7 we obtain the correlation function to be 

(((t)((t - 7)) = gf ( )C -it; g q- 
u m--cc 

Gl) I 

where we have transformed Eq. 7 to its 5 function representation. 

The first order term of Eq. 18 is 

I I ‘dt, 
0 (,‘I dtz(~(t,)~(t,))B(t,)B(tz) = 

- ($) JofdtlJo”dt2B(f~)B(tz) 

dtlB(t,)B(tl - 27m/w,r) 

We find, 

B(tl)B(tz) = sin(w;(tl - t2)) 

i 

-Sin(w;t~)cos(w;t2)-sin(w;tl)sin(w;tz) 

COS(Witl) COS(witz) COS(witl) sin(w;&) 

The integrals are: 

I I tdtl 
0 

ot’ &B(h)B(h) = 

(20) 

(21) 

2wft’ - 2w;t sin(2w;t) - cos(2w;t) + 1 4w;t + 2w;t cos(2w;t) ~ 3sin(2w;t) 3) 

2wit COS(2w;t) - sin(2w;t) 2LJft* + 2wit sin(2w;t) + 3 COS(2w;t) - 3 
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and 

/ ot dtlE(t*)B(tl - tm) = 
t - t, 
-4 

-2 siIl’(U;t,,) - sin(2w;t,) 

4 
t 

sin(2w;t,) -2 sin’(w;t,)) 

1 

i 

sin(2w;t) - sin(2w;(t - tm)) - sin(2w;t,n) -2sin’(w;t,) - cos(2w;t) + cos(2w;(t - tm)) 

SW, -2 sin’(w;t,) - cos(2w;t) + cos(2w;(t - tm)) - sin(2w;t) + sin(2w;(t - t,“)) + sin(2w;t,) 

where t,, = 2m7r/wo. 

A. Parametric Resonance Case 

Substituting Eq. 23 and 24 into Eq. 21, we find the dominant term to be 

( )[ 
2w,2 
N 

& my;2r(t - t,“) cos(2w;t,“) l O 

Ii I 
01 

(25) 

When the parametric resonance[5] condition Zw;/w, = n, n. = 1,2,. is satisfied, 

cos(2w;t,) = 1. Equation 25 is proportional to tZ and equals wft’/BN times the unit 

matrix. 

For the resonant case, keeping only the dominant t2 term, we get 

B(t~)B(tz) = -i sin2(w;(tl - tz)) lo 

(i 
01 

(26) 

In this case, B(t,) and B(t2) commute and the time ordered product operator in 

Eq. 18 can be dropped. We find 

(G(t)) = exp($)G(O) (27) 

Transforming back to the original picture, we see that (C(t)) is a rotating vector 

with its length proportional to exp(wft’/BN). 

The second moments of the ion distribution are calculated to be 
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(28) 

cos(2w;t) - cos(2w;t) 2 sin(2w;t) 

cos(2w;t) -2 sin(2w;t) 

- sin(2w;t) sin(2w;t) 2COS(2Wit) 

The energy of the ions grows proportional to the fourth power of the average 

amplitude, i.e., 

= exP( 2N q(E(0)) (29) 

The diffusion of the ions causes the energy to be proportional not to the square of 

the average amplitude but to the fourth power. 

It is interesting to compare these results to those for the parametric resonance[5]. 

The average amplitude grows exponentially with time squared, faster than the case 

of typical parametric resonance where the amplitude is proportional to exp(2w;tln). 

Also note that both the amplitude and the energy are independent of n. For the 

typical parametric resonance, the resmance is weaker for higher 7~. This is due to the 

fact that the Schottky noise contains all frequencies which are integral multiples of 

41. 

B. Non-resonant Case 

If the resonant condition is not satisfied, Eq. 25 is 

(gf) [& (;+ ;s;y;;,z) )I( I ;; , (30) 
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where a = 2~2 and m’ equals the largest integer 5 tu0/2r. The second term of 

Eq. 30 is oscillatory when the resonant condition is not satisfied. When a approaches 

the resonant condition, this term approaches the t* term of the resonant case. 

The first term is more interesting. It is linear in t and it is independent of the 

resonant condition. The ions can absorb energy from the beam even though the 

resonant condition is not satisfied. 

We will work out the limit where the off-diagonal terms are small and a is in the 

middle of two resonances(a = (n + ;)27~). The dominant off-diagonal terms are 

(gf) [~-~(‘““t(“!2)-~~~~~;kl~~ “,i (31) 

)I( 1 

Notice that the sin(m’a) term cancels the t cot(a/2) term at resonances. When a is 

in the middle of two resonances(a = (n + :)2x), Eq. 31 reduces to w;t/BN. 

From Eq. 30 and 31, we find the ratio of diagonal term to off-diagonal term to 

be a/2. As long as a/2 is large, we can keep only the diagonal terms. Following the 

same procedure as in section IV A, we get 

(G(t)) = exp($$)w’(O) . (32) 

Similarly, the energy of the ions grows proportional to the fourth power of the 

average amplitude, i.e., 

(E(t)) = exp(s)(E(O)) . (33) 

Notice that in this case the average amplitude and the energy depend on 2w;/w,,. We 

recall that in the resonant case, they are independent of 2w;/wo. 
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V. DISCUSSION 

It is shown that trapped ions gain energy through their interaction with the beam 

Schottky noise. If the resonant condition is satisfied, the average amplitude (C(t)) 

grows like exp(wft’/BN) and the size of the distribution diffuses like exp(wzt2/2N). 

In the non-resonant case, the ions still absorb energy from the beam. In the case 

2w;/wo is in the middle of two resonances, if a/2 is large, the average amplitude grows 

like exp(aw;t/4N). It is interesting to compare with cases where the auto-correlation 

time is short, e.g., white noise. It has been shown[4] that the energy rate of growth 

is proportional to the spectral power density of the noise at the frequency of 2w;, i.e., 

the resonant condition has to be satisfied for the ions to absorb energy. In our case, 

where the correlation time is infinite, the ions absorb energy even when the resonant 

condition is not satisfied. 

In the case of ions trapped in the jj beam in FNAL Accumulator, n is 5 and a/2 

is 16. The ions trapped in the beam will diffuse out of the beam by the mechanism 

described in this paper. In reality, the trapping potential of a real beam is non-linear. 

In analogy to the betatron resonances of storage rings, the resonant condition for the 

k”’ non-linear resonance could be kw;/q, = n, k 2 3. It is possible ions could also 

escape the beam by this mechanism. 
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